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Precise detection of Alzheimer’s disease (AD), especially at the early stages, i.e., early mild cognitive im-
pairment (EMCI) and MCI, allows the physicians to promptly intervene to prevent the progression to 
advanced stages. However, identification of such stages using non-invasive brain imaging techniques like 
DWI, remains one of the most challenging tasks due to the subtle and mild changes in the brain struc-
tures of the subjects. Findings from previous studies suggested that topological organization alterations 
occur in the DTI-derived structural connectomes in MCI patients. Therefore, for improving diagnosis per-
formance, we presented a connectome-based deep learning architecture based on BrainNet Convolutional 
neural network (CNN) model. The proposed model automatically extracts hidden topological features 
from structural networks using specially-designed convolutional filters. Experiments on 360 subjects, 
including 120 subjects with EMCI, 120 subjects with MCI and, 120 normal controls (NCs), with both 
T1-weighted MRI and DWI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), provided 
the highest binary classification accuracies of 0.96, 0.98, and 0.95 for NC/EMCI, NC/MCI and EMCI/MCI 
respectively.
In addition, we also investigated the effect of different atlas sizes and fiber descriptors as edge weights 
on the discriminative ability of the classification performance. Experimental results indicate that our 
approach exhibited superior performance to previous methods and performed effectively without any 
prior complex feature engineering and regardless the variability of imaging acquisition protocols and 
medical scanners.
Finally, we observed that DTI-based graph representation of brain regions connections preserve important 
but hidden connectivity pattern information to discriminate between clinical profiles, and our proposed 
approach could be easily extended to other neurodegenerative and neuropsychiatric diseases.

© 2023 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Alzheimer’s disease (AD) is an irreversible, degenerative neuro-
logical disorder that causes progressive deterioration of the brain 
connectivity network followed by a decline in cognitive abilities. It 
is the most prevalent cause of dementia, accounting for about 60% 
to 70% of all dementia cases in the World [1–3]. Although there is 
no way to stop the disease when it is too advanced, studies show 
that its progression can be slowed down or interrupted if identi-
fied at an early stage [4]. Mild cognitive impairment (MCI) is the 
first sign of dementia which holds a great potential to convert into 
Alzheimer’s disease within the subsequent 3–5 years [5,6]. On the 
trajectory leading to Alzheimer’s Disease, Early mild cognitive im-
pairment (EMCI), another prodromal stage of AD, is considered as 
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the earliest and relatively asymptomatic diagnostic group, and also 
a transitional stage to AD [7]. Investigating EMCI subjects is also 
particularly important alongside the MCI subjects. This is primarily 
because 27% of those with EMCI have been recorded to convert to 
AD [8]. Subsequently, identification of both Early MCI and MCI is a 
pivotal step to early-stage detection of dementia, making it possi-
ble for clinicians to provide early intervention and develop future 
treatments. However, an accurate and robust diagnostic classifica-
tion is considered highly challenging due to the minimum variance 
between the early stages of Alzheimer’s Disease especially, EMCI 
and MCI patients.

Some advanced neuroimaging techniques, such as diffusion ten-
sor imaging (DTI) can detect the age-related alterations in the 
topology of the brain structural network. This is thought to re-
sult from white matter microstructure degeneration in AD and MCI 
due to demyelination, gliosis, severe fiber loss and etc. [9,10,42,43]
Graph theory is a robust body of mathematical knowledge that 
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enables representing the brain as a large-scale complex network 
of interacting elements, the so-called “human connectome” [11]. 
These macroscopic-level connectomes can be constructed from dif-
fusion MRI tractography of white matter through assigning differ-
ent anatomical regions as nodes and the white matter fiber con-
nections between the regions as edges. Once the brain network is 
generated, many graph-based measures such as small-worldness, 
modular structure, network efficiency and centrality can be used 
to elucidate the underlying topological organization of the net-
work. There is growing evidence showing that these graph metrics 
demonstrated decrease in topological efficiency in AD and MCI pa-
tients, which is associated with synaptic damage and cognitive 
decline [12,13]. However, in healthy subjects, the topological orga-
nization of the connectomes is highly efficient in combination with 
a high level of segregation and integration [14]. These findings in-
dicate the tremendous potential of connectome-based biomarkers 
in early detection of AD, for the early identification of dementia 
and diagnostic groups like early MCI and MCI.

Over the past decade, a large number of studies attempted to 
develop machine learning and deep learning methods to look at 
the potential of diffusion-weighted imaging for AD stage classifi-
cation. Most of these studies have used statistical and traditional 
machine learning methods along with handcrafted features which 
are extracted from neuroimaging data and make the experiments 
difficult to reproduce. Prasad et al. [15] used connectivity matrices 
of 68 × 68 and extracted network metrics from 68 brain regions. 
Graph or network metrics are then used as input of support vector 
machine (SVM) to classify early MCI and NC, achieving an accuracy 
of 59%.

These traditional machine learning methods are likely to fail in 
challenging scenarios such as identifying EMCI, because of their 
inability to capture high-level features in DW images.

Another approach that has recently received much attention in 
the neuroimaging domain and brain data analysis is deep learning 
algorithms. In deep learning-based techniques, automatic feature 
extraction enables models to extract meaningful and complex hid-
den features within the input dataset. Parameter sharing in neural 
networks is another advantage of these techniques in which the 
number of unknown parameters reduces significantly, leading to 
improving computational efficiency. (Khvostikov et al. [16]) Ex-
tracted ROI-based hippocampus volumes in structural MRI and DTI 
modality and then used a 3D deep neural network to distinguish 
Alzheimer’s disease and Mild cognitive impairment. An accuracy of 
0.68 had been obtained for the ternary AD/MCI/NC classification 
problem.

However, deeper neural network architectures require more 
data, and consequently a substantial time for training. The main is-
sue, however, is that, in general, data in the neuroimaging domain 
(especially DWI), is not adequately available. Due to this reason, 
several research studies have utilized transfer learning techniques 
based on popular deep learning networks to address the lack of 
data. “Transfer Learning” or fine-tuning is a phenomenon which is 
reusing the weights of a previously trained model that is initially 
implemented for other application domains [17]. This approach 
can be implemented by freezing network layers (mostly interme-
diate layers). Kang et al. [18] proposed a convolutional neural net-
work based on transfer learning technique to extract features of 
multi-modality images (sMRI and DTI) and utilized an SVM classi-
fier for binary classification of EMCI and Normal Control subjects. 
They reported an average accuracy and specificity of 94% and of 
92% respectively for a dataset of 70 EMCI and 50 NC subjects. 
Marzban et al. [19] employed a 2D CNN model and extracted diffu-
sion maps (FA and MD) and gray matter volumes as input images 
for detecting MCI and AD and achieved an accuracy of 79.6% and 
93.5% respectively.
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A handful of studies tried to apply DTI tractography in com-
bination with graph theory to identify AD stages through deep 
learning algorithms. For example, Lella et al. [20] developed an en-
semble model based on three topological properties of the network 
(weights; shortest path length and communicability), measured 
from DTI data to identify MCI. Sheng et al. [21] in another study, 
used handcrafted network measures such as strength (S), degree, 
local efficiency (LE) and subgraph centrality (SC) from fMRI data to 
a binary classification of four AD stages. SVM is then used for fea-
ture selection before feeding the final features to a five-layer Deep 
Neural Network model.

Conversely, the connectome data that is derived from apply-
ing graph theory to DTI streamlines cannot directly be used as 
input to Neural network filters due to the inherently topologi-
cal information that exists between graph or network elements. 
This is the point where graph neural networks (GNNs) [22] come 
in. Graph Convolutional Neural Networks (GCNN) [23] are spe-
cial cases of GNNs that generalize the operation of convolution 
from grid-like data (i.e. images) to graph structured data via graph 
Fourier transform [24]. Such networks can automatically extract 
and use non-linear features of graphs for the classification task, 
which is significantly superior to low-level linear methods. Song 
et al. [25] presented a multi-class Graph CNN architecture for di-
rect usage of structural connectivity matrices as input, reported an 
average accuracy of 89% in four stage classification for a dataset 
consisting of 12 subjects for each class.

On the other hand, however, GCNs, while increasingly popular, 
also seem under performed to use with connectome data, since 
the relationships between the nearest pixels on a channel can only 
to be captured, and therefore the most valuable information exists 
between distant nodes in an adjacency matrix might get lost. In 
this context, deep neural networks that can exploit the topologi-
cal characteristics of brain networks have been recently explored. 
In 2017, BrainNetCNN was proposed to exploit hidden topologi-
cal network features for predicting the neurodevelopment outcome 
scores in preterm infants [26]. This type of neural network mainly, 
is a novel type of CNN and can preserve topological information in 
connectomic data while training connectivity matrices using three 
specially-developed filters. The filtering layers are listed as follows: 
1) edge-to-edge (E2E) layer, 2) edge-to-node (E2N) layer and 3) 
node-to-graph (N2G) layer.

In addition, two recent studies also demonstrated that spec-
tral GCN and traditional CNN is considerably less-optimal than 
the BrainnetCNN, one in resting-state functional connectivity for 
behavioral prediction [27] and another one in sex prediction on 
structural connectomes [28].

In this work, we further propose a modified version of the 
BrainNetCNN to address multi-class and binary classification tasks 
of three AD prodromal stages, including early MCI, MCI and Health 
controls. To our best knowledge, we are the first to employ Brain-
netCNN for early MCI and MCI classification using structural brain 
connectomes calculated from CSD-based probabilistic tractography. 
Finally, we elaborated structural network representations by apply-
ing a range of fiber descriptors such as the normalized number of 
fibers, fiber integrity (or “fractional anisotropy”), fiber length and 
fiber density between pairs of anatomical brain regions to find the 
best weighted representations of structural connectome in terms 
of robustness and precision in the classification process.

2. Material and methods

2.1. Data acquisition

Structural MRI and DTI data for normal controls (NC), EMCI and 
MCI subjects used in this study are obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database [41]. It launched 
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Table 1
The clinical and demographic characteristics of participants with NC, EMCI, and MCI groups.

NC EMCI MCI

Number 120 120 120
Gender (F/M) 50/70 42/78 47/73
Age (year) 75.26 ± 6.52 72.9±8.3 73.47 ± 7.23
MMSE 29.18 ± 0.98 27.86±1.66 26.88 ± 1.76
GE/SIEMENS/PHILIPS 46/64/10 68/41/11 14/87/19
in 2003 as a public-private partnership, led by Principal Investiga-
tor Michael W. Weiner, MD. ADNI is a multisite, longitudinal study 
and its main goal is to detect biomarkers for clinical use and to 
test whether serial MRI, PET, other biological markers, clinical and 
neuropsychological assessment can be combined to measure the 
progression of MCI and early stages of AD.

In particular, we analyzed a balanced cohort of 360 subjects 
grouped into 120 NC, 120 EMCI and 120 MCI. The dataset is la-
beled as one of the AD prodromal stages according to their ADNI 
classification. The criteria for the classification of the subjects was 
based on mini-mental state examination (MMSE) and global clin-
ical dementia rating (CDR) scores [29]. For the EMCI cohort, the 
subject must have a subjective memory concern as reported by 
the subject, study partner, or clinician. Both early MCI and MCI 
have an MMSE score between 24 and 30; a Clinical Dementia Rat-
ing (CDR) score of 0.5, to which the participants reported memory 
complaints with no significant functional impairment. Therefore, to 
distinguish between the EMCI and MCI, objective memory deficits 
on the Wechsler Memory-Scale-Logical Memory II test was used 
with scores between 0.5SD–1.5SD indicating early MCI and lower 
than 1.5SD below the norm indicative of MCI, which ensured no 
overlap between the clinical profiles. Table 1 shows the detailed 
demographic information of the subjects used in this study. We in-
cluded the subjects whose DWI and T1-weighted MRI scans were 
available at baseline. A variety of different 3T Medical Systems 
manufactured by GE, Siemens and Philips were used for whole-
brain MRI scanning for all the participants. 46 separate images 
were acquired for each DTI scan: 5 T1-weighted images with no 
diffusion sensitization (b0 images) and 41 diffusion-weighted im-
ages (b = 1000 s/mm2). For DWI scans, two different acquisition 
protocols are described: 1) Axial DTI and 2) Enhanced Axial DTI 
according to the “IDA_MR_Metadata_Listing.csv” file on the ADNI 
website. More details about the ADNI MRI scanners data acquisi-
tion protocols can be seen on ADNI’s official webpage [41].

2.2. Preprocessing

Basically, for computing the structural connectivity matrix, the 
image processing steps were divided into two pathways that con-
verge at the registration step for a final pathway.

Firstly, the cerebral cortex for each subject was parcellated from 
high resolution anatomical T1-weighted volume into 129, 234 and 
463 brain regions using Freesurfer software and the Lausanne 2008 
(hierarchical multi-resolution parcellation scheme) [30]. The atlas 
was originally created to produce multiple acceptable resolution 
and approximately equal brain regions (about 1.5 cm2) based on 
Desikan-Killiany and Hagmann atlases. This anatomical reference 
information of each region would further be used to define net-
work nodes. More precisely, intensity normalization, motion cor-
rection, non-brain tissue removal, skull stripping and brain mask 
generation are also done by Freesurfer’s recon-all function.

Diffusion MRI scans on the other hand were first corrected for 
susceptibility distortions and eddy current induced by gradients 
and head motion [33] using the FSL software package [31].

Then, the parcellated images created during the segmentation 
step have co-registered to the non-diffusion-weighted (b0) average 
of dMRI volumes using affine transformation with FLIRT. Finally, af-
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ter structural network nodes were determined using 129, 234, and 
463 parcellation scales, voxel-wise fiber orientation distributions 
(FOD) were computed using constrained spherical deconvolution 
(CSD) and will serve later on to perform tractography. The MRtrix 
package was employed to reconstruct whole-brain fiber stream-
lines using probabilistic tractography by (iFOD2) function in MRtix 
software [32], which improves reconstruction accuracy but has not 
been broadly used in connectome analyses and AD staging.

A set of one million streamlines in the brain were generated 
using 5tt maps and randomly seeding the brain mask within the 
GM/WM interface with the following parameters: default step size 
of (0.5), curvature angle: 45◦ and FOD amplitude threshold: 0.2. 
The so-called 5-tissue type segmented images (5TT) were also pro-
vided to the anatomically-constrained tractography (ACT) which al-
lows us to detect the GM/WM interface directly. In 5TT format, the 
brain tissue is categorized into 5 different tissue types: CSF, WM, 
cortical gray matter, subcortical gray matter and pathological tis-
sue. The ACT method overall improves tractography reconstruction 
results using anatomical information through imposing a limitation 
for the streamline generation [34]. Each of the whole-brain struc-
tural connectomes took around 18 hours to calculate and a SIFT 
tract filtering method had been used to remove false positive tracts 
for each tractogram. The SIFT method tries to improve the agree-
ment between the generated streamlines and the diffusion data to 
decrease computational artifacts by eliminating fibers that are too 
long and too short. It was recently shown that the SIFT method 
leads to a more reliable and biologically meaningful connectome 
[35].

2.3. Structural connectivity (SC) matrix construction

For constructing white matter structural matrices which are 
symmetric by nature, fiber counting was performed on each par-
cellated brain template and WM tracts of the probabilistic trac-
tography. The Lausanne 2008 atlas segmented the brain into 129, 
234 and 463 regions, and so the consequent generated structural 
connectivity networks are weighted matrices with dimension of 
129 × 129 and 234 × 234 and 463 × 463 respectively. The value of 
each element within the matrix represents one of the three fiber 
descriptors (normalized number of fibers, FA mean, fiber length 
and fiber density) with two endpoints located in two distinct re-
gions. Eventually, the connectivity matrices were created for each 
subject using a variety of fiber descriptors such as fiber integrity 
as measured by mean fractional anisotropy (FA mean), fiber length, 
fiber density and the normalized number of fibers (calculated as 
the ratio of the number of fibers and the voxel number). These 
quantitative descriptors serve as edge weights, connecting parcel-
lated regions in the brain network. The schematic methodology of 
data processing steps is summarized in Fig. 1.

2.4. Connectome augmentation

A dataset of 360 adjacency matrices for training a deep neural 
network model is considered relatively low even in the presence 
of powerful convolutional filters. This is due to the high num-
ber of parameters that need to be learned in a deep neural net-
work. Therefore, we employed an oversampling SMOTE technique 
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Fig. 1. Image processing pipeline. DWI and T1-weighted scans underwent several processing steps to generate a structural connectivity matrix as the final output.
to augment the number of connectomes in each class. We uti-
lized SMOTE to generate five more samples for each connectome 
synthetically and, as a result, enhance the prediction efficiency of 
the model. The constructed adjacency matrices used to build the 
following human connectome dataset for training a BrainnetCNN 
model. Finally, our dataset was split into a train set and test set 
with a ratio of 7:3.

2.5. Proposed deep learning architecture

Deep neural networks and particularly convolutional neural 
networks (CNNs) have had great success in many different do-
mains, and this is due to the increased availability of GPU com-
puting and large-scale public datasets, and in part to the poten-
tial of learning representations from grid-like data structures (i.e. 
images) through convolutional filters. However, the conventional 
formulation of traditional CNNs is purely limited to grid-like data 
structures like images; thus they are not capable of capturing so-
phisticated topological neighborhood features, and since the hu-
man connectome is inherently represented as a graph rather than 
a grid, CNNs are inefficient when dealing with data which are pre-
sented in an irregular grid or more generally, in a non-Euclidean 
space. This is due to the inherent characteristic of adjacency matrix 
where local neighbors of a brain region (or a node in the adjacency 
matrix) are placed along horizontal rows and vertical columns. 
Hence, many machine learning or deep learning techniques are 
limited in their capability to capture relationships between clini-
cal/behavioral variables and connectomic features because of their 
dependence on shallow or linear algorithms.

BrainnetCNN was specifically developed by Kawahara et al. in 
2017 to predict preterm infant Age and Neurodevelopmental Out-
come scores [26]. The main idea was to extend convolutional neu-
ral networks (CNNs) to leverage the topological structure of brain 
networks and make it possible to utilize graph-structured (i.e. 
connectome) data directly. Furthermore, BrainnetCNN is making it 
possible to exploit the topological local characteristics of brain net-
works (Fig. 2). It consists of specially-designed edge-to-edge (E2E), 
4

edge-to-node (E2N) and node-to-graph (N2G) convolutional layer 
types for brain network data. Each layer in fact, is a unique filter 
that is a particular case of more general convolutional filters that 
can have meaningful interpretations in terms of network topology.

E2E layer: In contrast to the box shape filters in CNNs, Brain-
netCNN utilizes some cross shape filters in the E2E layer with the 
dimension of 1 x d and d x 1 (for an input connectome with the 
size of d x d) to combine signals from direct neighbors. The edge-
to-edge layer (E2E), which is the first layer of the BrainnetCNN is 
analogous to a traditional convolutional layer and can only be ap-
plied before edge-to-node (E2N) layer. In fact, in both E2E layer 
and convolutional layers, the data is being filtered locally in small 
patches. Defining the convolutional layer in terms of spatial local-
ity and the E2E layer in terms of topological locality indicates the 
difference between these two types of filtering layers. Moreover, 
at the E2E layer, the weighted sum of edges in the network that 
shares a node is calculated by the above-mentioned cross-shaped 
filter and produces M feature maps. Since a connectome network 
has no boundaries in terms of topological properties, the output 
feature maps of the E2E layer are the same size as input connec-
tome networks. These feature maps, thus, are the input of the E2N 
layer (Fig. 3).

E2N layer: Applying the cross-shaped filter to only the diago-
nal elements of the input feature map is the key distinguishing 
attribute of the E2N layer. It takes in a d x d feature map and out-
puts a unique vector with the size of d x 1. Thus, in other words, 
the layer is designed for reducing the input dimensionality of ex-
tracted features.

N2G layer: This is a fully-connected layer connected to the pre-
vious layer (E2N layer). Fully connected (FC) layers in this case 
reduce the number of features down to two output score predic-
tions.

For each output feature map, M, the Node-to-Edge filter per-
forms a 1D spatial convolution and reduces the spatial dimensions 
of the original input.

In Kawahara’s study, a regression task for prediction, performed 
over a single class and it cannot be directly used in binary or 
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Fig. 2. Schematic representation of the proposed model architecture. Modified BrainnetCNN consists of three blocks, each representing the input and/or output of the 
numbered filter layers. The input connectivity matrix is first convolved with a multiple numbers of E2E filters which weight edges of the brain network. The output then 
is convolved with some E2N filters which assign each brain region a weighted sum of its edges. The N2G in this architecture assigns a single response based on all the 
weighted nodes and eventually, the Fully-connected layer (FC) reduces the number of features down to three class class-membership probability.
multi-class classification. In this current work, we have extended 
BrainnetCNN method to determine the discriminative capability of 
using CSD-probabilistic structural connectivity matrix in separat-
ing EMCI and MCI patients from normal controls (NCs). This is 
achieved through converting the original regression task in Kawa-
hara’s method to a classification task, in which, the proposed neu-
ral network classifies the structural network matrices into one of 
the three disease class labels. In order to reduce the number of 
trainable parameters and the dimensionality of the input, we used 
8 E2E layers and 16 E2N layers, each followed by a leaky rectified 
linear unit (denoted LeakyReLU). The output layer is a single fully-
connected node-to-graph (N2G) layer and carries out the classifica-
tion operation. As aforementioned above, the N2G fully-connected 
layer is our classifier whose output dimensionality is equal to the 
number of possible answers.

The probability for each class-membership is computed by ap-
plying a softmax function for the multi-class tasks and a sigmoid 
function for the binary tasks to the output vector of the final layer.

2.6. Experimental setting

Modified BrainnetCNN network implemented using Keras deep 
learning suite and TensorflowBackend, via the Adam optimizer [36]
with a learning rate of 10−4 and a batch size of 4. All the experi-
ments are conducted on a machine with Ubuntu 20.04, an NVIDIA 
GeForce RTX 2060 GPU with dedicated 6 GB memory along side an 
Intel i7 Central Processing Unit (CPU) 64 bits. To reduce the over-
fitting, we employed an early stopping strategy and added some 
dropout layers after each main layer in the architecture. Dropout 
layers work by setting the output of each hidden neuron in the 
neural network to zero with a specific probability [37]. The whole 
process thus, is discarding some neurons so they will not activate 
during forward pass and backpropagation, thereby enhancing gen-
eralization performance.

3. Results

In this section, we show some experimental results on train-
ing and evaluation for a ternary NC/EMCI/MCI and three binary 
(EMCI/NC, MCI/NC, EMCI/MCI EMCI/MCI) classification tasks to 
identify corresponding classes.

The obtained results are reported in Table 2. Furthermore, to in-
vestigate the impact of choices of different fiber descriptors strate-
gies on classification tasks, we also evaluated our proposed model 
based on different fiber descriptors such as fiber density, average 
fractional anisotropy (FA mean), fiber length and the normalized 
number of fibers.
5

Fig. 3. Architecture of modified BrainnetCNN neural network model.

Eventually, four standard metrics (accuracy, precision, recall and 
F1-measure) were considered to assess the performance of classi-
fication results. These metrics are defined as:

Accuracy = TP + TN

TP + TN + FP + FN

Precision = Conf idence = TP

TP + FP

Sensitivity = Recall = TP

TP + FN

F 1 − Score = 2 ∗ Precision ∗ Recall

Precision + Recall

Where TP, TN, FP, and FN are denoted as the true positive, true 
negative, false positive, and false negative, respectively and are 
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Table 2
Classification performance results of the proposed method for distinguishing EMCI and MCI from NC.

Task Atlas size Accuracy Precision Recall F1-score

FA mean

NC vs EMCI N=129 0.92 0.91 0.93 0.92
N=234 0.90 0.89 0.92 0.90
N=463 0.96 0.94 0.96 0.95

NC vs MCI N=129 0.89 0.90 0.88 0.89
N=234 0.93 0.92 0.93 0.92
N=463 0.98 0.98 0.98 0.98

EMCI vs MCI N=129 0.86 0.84 0.84 0.84
N=234 0.88 0.88 0.88 0.88
N=463 0.96 0.95 0.93 0.94

NC/EMCI/MCI N=129 0.85 0.86 0.84 0.85
N=234 0.86 0.89 0.84 0.86
N=463 0.92 0.92 0.92 0.92

Normalized Number of Fibers

NC vs EMCI N=129 0.88 0.87 0.89 0.88
N=234 0.90 0.88 0.92 0.90
N=463 0.92 0.92 0.93 0.92

NC vs MCI N=129 0.87 0.86 0.86 0.86
N=234 0.86 0.84 0.87 0.85
N=463 0.95 0.94 0.95 0.94

EMCI vs MCI N=129 0.84 0.81 0.83 0.82
N=234 0.84 0.79 0.84 0.81
N=463 0.91 0.90 0.90 0.90

NC/EMCI/ MCI N=129 0.82 0.82 0.82 0.82
N=234 0.86 0.86 0.86 0.86
N=463 0.88 0.85 0.86 0.85

Fiber Density

NC vs EMCI N=129 0.84 0.84 0.86 0.85
N=234 0.86 0.90 0.88 0.87
N=463 0.90 0.89 0.91 0.90

NC vs MCI N=129 0.87 0.84 0.86 0.85
N=234 0.84 0.83 0.84 0.83
N=463 0.94 0.92 0.93 0.93

EMCI vs MCI N=129 0.87 0.86 0.85 0.85
N=234 0.90 0.90 0.89 0.89
N=463 0.95 0.94 0.92 0.93

NC/EMCI/MCI N=129 0.85 0.86 0.85 0.85
N=234 0.86 0.83 0.86 0.84
N=463 0.86 0.86 0.86 0.86

Fiber Length

NC vs EMCI N=129 0.85 0.85 0.85 0.85
N=234 0.84 0.85 0.84 0.84
N=463 0.87 0.86 0.87 0.86

NC vs MCI N=129 0.85 0.85 0.85 0.85
N=234 0.86 0.87 0.88 0.87
N=463 0.86 0.83 0.84 0.83

EMCI vs MCI N=129 0.73 0.73 0.73 0.73
N=234 0.75 0.76 0.76 0.75
N=463 0.83 0.85 0.84 0.84

NC/EMCI/MCI N=129 0.77 0.75 0.74 0.74
N=234 0.79 0.79 0.79 0.79
N=463 0.83 0.83 0.83 0.83
derived from the confusion matrix. TP in our case, indicates the 
number of Early MCI and MCI patients and TN is the number of 
Health Controls that are identified correctly. FP on the other hand, 
refers to the number of subjects falsely identified as EMCI or MCI 
patients, and FN is the number of health Control subjects that are 
misclassified.

The best performance of ternary classification’s (NC/EMCI/MCI) 
accuracy, precision, recall, and F1-measure for BrainnetCNN model 
and weighted connections of average fractional anisotropy between 
6

the brain regions was 92%, thereby significantly exceeding the cur-
rent state-of-the-art methods.

The highest accuracy was obtained in the MCI/NC classification 
tests using average Fractional Anisotropy edge weights and con-
nectomes made by atlas size of 463. Modified BrainnetCNN were 
also able to discriminate between EMCI and MCI patients with an 
optimal performance (accuracy, recall and precision scores higher 
than 90%; Table 2). In distinguishing EMCI from Normal Control 
subjects, the proposed approach reached an accuracy, up to about 
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96%, for FA mean and 92% for normalized number of fibers as edge 
weight connection, making it by far the highest classification per-
formance achieved so far. Overall, average fiber length descriptor 
had performed poorly to distinguish between AD stages and was 
not a reliable descriptor to discriminate between mild stages.

In summary, based on the literature, our classification results 
indicate that the proposed approach is significantly better than 
other comparative approaches in both binary and multi-class cate-
gorization experiments of EMCI, MCI and NC groups.

4. Discussion and conclusion

The present study aimed to evaluate the capability of the novel 
deep learning technique, BrainnetCNN and DTI-derived brain net-
works for identifying EMCI and MCI stages efficiently. Overall, most 
of the previous studies of early MCI diagnosis suffer from sev-
eral problems such as low robustness and accuracy and heavy 
handcrafted feature engineering. Therefore, to overcome these is-
sues, we used structural brain connectomes as direct inputs to 
our modified BrainnetCNN model. We also assessed the influence 
of four different fiber descriptors on the performance of the pro-
posed model; using average Fractional Anisotropy (FA mean), Fiber 
density, Fiber length and normalized number of fibers as edge 
connection between brain parcels in our study, demonstrated that 
classification results can be significantly affected by the chosen 
intra-voxel markers. To generate fiber pathways, previous studies 
have commonly relied upon just a single type of fiber descriptor 
scheme.

In almost all the classification groups, the performance of the 
proposed method exceeded that of the baseline approaches, al-
though the differences were larger for higher resolution parcella-
tions.

We found that the 463-node atlas provided higher classification 
rates than the smaller atlases, suggesting that higher resolution 
parcellations allow better detection of hidden topological features.

Results suggest that the parcelletation scale with 463 brain re-
gions has achieved the best performance in our model with an 
accuracy of 98%, making it the most robust sensitive approach. 
We have demonstrated that the proposed method can predict AD 
stages with an accuracy that, for EMCI and MCI, matches or im-
proves on the corresponding stages classified with the conven-
tional deep learning methods. While no direct comparison could be 
made to other neural network-based methods for AD stages pre-
diction, as we found no such method that could be implemented 
on a BrainnetCNN model directly, the accuracies for EMCI and MCI 
are comparable with accuracies reported in the literature [18–21].

Another contribution of our work is to highlight the advan-
tage of using the CSD-based (Constrained Spherical Deconvolu-
tion) probabilistic tractography to circumvent the limitation of 
accurately estimating the actual trajectories of white matter in 
kissing or fanning fibers areas [38,43]. The probabilistic method 
also shows higher structural reproducibility than the deterministic 
method in terms of adjacency matrix computation [39].

Our results help to clarify that structural connectome informa-
tion based on probabilistic tractography fiber descriptors is a valu-
able and sensitive approach to diagnose dementia and Alzheimer’s 
disease at early stages.

In addition to high sensitivity and accuracy, the proposed ap-
proach has several advantages: Firstly, the modified BrainnetCNN 
has the potential to detect structural deficits and changes asso-
ciated with early dementia stages and AD. Secondly, in contrast 
to previous multi-modality fusion methods [16,18,40], we did not 
utilize multiple neural network models to extract features of the 
neuroimaging data and then fuse them in the final step. Contrarily, 
the proposed model, automatically extracts the semantic topolog-
ical features from the input DTI-derived structural networks and 
7

then we fused structural MRI brain regions in our DWI data which 
are crucial supplements to anatomically-constrained probabilistic 
tractography (ACT).

As far as we know, this is the first work investigating the direct 
usage of ACT-based and CSD-based structural connectivity matrices 
in diagnosis of EMCI and MCI patients. Several previous studies are 
noted that multi-modality MRI especially DTI and fMRI modalities 
are much more effective than structural MRI alone for EMCI identi-
fication; However, none of them employed techniques such as ACT 
and CSD probabilistic tractography and fed the derived connectome 
directly to the neural network model [16,18–20,43].

Interestingly, the predicted classification of EMCI group and 
classification of Health Controls were highly accurate (96%) in 
this study, while there were still significant difficulties in classi-
fying both groups within previous studies. This may be due the 
characteristic features of EMCI with NC are hard to be detected 
from conventional image analysis and complex feature engineer-
ing from multiple neural network models, and capturing the dis-
rupted topological organization of DTI fiber-made brain networks 
using connectome-based deep neural network models is likely to 
be the key to distinction between early phases of dementia. The 
structural brain network, indeed, seems to embody highly discrim-
inative properties characterizing the clinical profiles. However, in 
reality, there were still some limitations in our study. First, we 
used a modest dataset size for training and evaluation of our neu-
ral network approach which is a common limitation in medical 
imaging analysis using deep neural networks where there is scarce 
DTI data available especially for EMCI patients. Second, although 
the topological features that had the most decisive influence in 
distinction between patient groups are not able to be discovered 
due to non-interpretability of the neural network models. However, 
our proposed model showed superior generalizability across EMCI, 
MCI and NC subjects and even multiple data acquisition sites. It is 
also worth to note that the differences in DTI MRI data processing 
methods used, as well as the differences in experimental setting 
(e.g., our model trains on substantially less trainable parameters 
than other approaches) make direct comparisons unclear, and that 
our major advantage is equipping a deep-learning framework with 
the proposed element-wise filters.

In summary, the outstanding classification performance
achieved in this article again proves that DTI-derived connectomes 
can act as non-invasive diagnostic biomarkers for early MCI and 
MCI detection. The robustness of our modified BrainnetCNN model 
is suitable for further development for clinical usage and future 
works could address multiple neuroimaging modalities to provide 
complementary information to d-MRI connectomes.
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